- 真空滤油机 (29)
- 多功能真空滤油机 (13)
- 防爆真空滤油机 (27)
- 透平油真空滤油机 (21)
- 润滑油滤油机 (24)
- 双级真空滤油机 (20)
- 绝缘油脱色装置 (10)
- 滤油车 (21)
- 不锈钢滤油机 (21)
- 板框式过滤机 (23)
- 手提式滤油机 (10)
- 有载分接开关在线滤油... (18)
- 钢丝绳注油机 (3)
- 电缆故障测试管理系统 (1004)
- 微机继电保护测试系统 (14)
- 变频串联谐振耐压试验... (133)
- 高压无线核相器 (204)
- 三通道直流电阻测试仪 (21)
- 变压器直流电阻测试仪 (278)
- 高压开关动特性测试仪 (166)
- 三相调压器 (59)
- 万能检测仪器 (35)
- 线路故障测试仪 (15)
- 绝缘梯 (68)
- 高压试验变压器 (399)
- 耐电压测试仪 (43)
- 手表式近电报警器 (25)
- 高压验电器 (223)
- 直流高压发生器 (144)
- 程控工频耐压试验装置 (3)
- 短路接地线 (116)
- 数字微安表 (10)
- 硅橡胶高压线 (140)
- 高压滤波电容 (11)
- 拉杆式测流仪 (11)
- 三倍频发生器 (34)
- 大电流发生器 (60)
- 介质损耗测试仪 (92)
- 电机故障测试仪 (5)
- 轴承感应加热器 (9)
- 绝缘垫 绝缘胶板 (24)
- 变压器容量分析仪 (24)
- 超低频高压发生器 (19)
- 雷电计数器校验仪 (9)
- 直流接地探测装置 (15)
- 漏电保护器测试仪 (18)
- 超高压耐压测试仪 (20)
- 高压测量仪/分压器 (40)
- 变压器电参数测试仪 (39)
- 矿用杂散电流测定仪 (14)
- 矿用电缆故障检测仪 (57)
- 数字绝缘电阻测试仪 (112)
- 便携式动平衡测量仪 (29)
- 双钳数字相位伏安表 (47)
- 钳形接地电阻测试仪 (147)
- 真空开关真空度测试仪 (48)
- 接地引下线导通测试仪 (28)
- 全自动变比组别测试仪 (42)
- 三相多功能伏安相位仪 (7)
- 变压器特性综合测试台 (31)
- 变压器有载开关测试仪 (19)
- 数字式泄漏电流钳形表 (47)
- 互感器特性综合测试仪 (54)
- 全自动电容电桥测试仪 (4)
- 绝缘油介电强度测试仪 (179)
- 直流系统接地故障测试... (4)
- 氧化锌避雷器带电测试... (53)
- 大型地网接地电阻测试... (18)
- 接地线成组直流电阻测... (3)
- 环氧绝缘板 云母带 ... (43)
- 发电机转子交流阻抗测... (14)
- 数字兆欧表/指针高压... (64)
- 鳄鱼夹/海豚夹/封闭... (128)
- 高空伸缩测试钳 (12)
- 绝缘靴(手套)耐压试... (57)
- 水内冷发电机绝缘电阻... (8)
- 电力**工器具力学性... (8)
- 滑线电阻器/滑线变阻... (108)
- 绝缘材料系列 (181)
- 扁平橡套软电缆 (13)
- 滑触线 (247)
- 分流器 (23)
- 铝合金梯 (36)
- 升降平台 (5)
- 脚手架 (6)
- 相序表 (5)
- 多一产品 (102)
- 哈尔滨电表 (51)
- 直流双臂电桥 (3)
- 气体检测报警仪 (97)
- 加热管、电热管 (155)
- 防雷元件测试仪 (7)
- 硅橡胶增爬裙 (3)
- 直流电位差计 (56)
- 直流电桥 (122)
- 直流标准电阻 (4)
- 直流电阻箱 (25)
- 直流单双臂电桥 (50)
- 直流检流计 (6)
- 测试器材 (151)
- 日本理音产品 (18)
- 日本共立产品 (135)
- TPI产品 (50)
- 绿扬仪器 (36)
- 泰纳产品 (33)
- 胜利产品 (139)
- 各种标准表 (124)
- 香港希玛产品 (129)
- 安规测试仪器 (55)
- 泰仕产品(台湾) (178)
- 台湾先驰产品 (21)
- 台湾衡欣产品 (79)
- 智能型太阳能光伏接线... (3)
- 选频电平表,电平振荡... (10)
- 高绝缘电阻测量仪 (12)
- 全自动电力变压器消磁... (2)
- SF6气体检漏仪 (277)
- 滑线变阻器,滑动变阻... (100)
- 非接触智能化仪表 (60)
- 倍频发电机组 (4)
- 各种电加热器 (391)
- 轴承感应加热器 (332)
- 电力**工器具 (3)
- 各种数字电桥 (119)
- 氧化锌避雷器 (82)
- 移动电缆盘 (20)
- 数控绕线机总汇 (170)
- 移动电缆盘 (4)
- 红外线测温仪系列 (552)
新闻详情
避雷器在电力系统的应用问题分析
日期:2025-04-26 03:21
浏览次数:1674
摘要:
避雷器在电力系统的应用问题分析
1.应用中的问题探讨
1.1避雷器自身过电压防护问题
避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(*大相电压),而有些暂态过电压*大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。
1.2避雷器自身对电力系统不**影响
保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、**运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。
1.3避雷器其连续雷电冲击保护能力
有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗*大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。
1.4工频能源的浪费
只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。
2.避雷器保护特性
2.1避雷器的保护特性参数
各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。
2.2避雷器动作特性运行稳定性
碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07C电荷量,工频续流为0.5~2.5C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~ 10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。
2.3串联间隙氧化锌避雷器
碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。
2.4避雷器运行工况监测
避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行**可靠性。
1.1避雷器自身过电压防护问题
避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(*大相电压),而有些暂态过电压*大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。
1.2避雷器自身对电力系统不**影响
保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、**运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。
1.3避雷器其连续雷电冲击保护能力
有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗*大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。
1.4工频能源的浪费
只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。
2.避雷器保护特性
2.1避雷器的保护特性参数
各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。
2.2避雷器动作特性运行稳定性
碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07C电荷量,工频续流为0.5~2.5C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~ 10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。
2.3串联间隙氧化锌避雷器
碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。
2.4避雷器运行工况监测
避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行**可靠性。